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Purpose: To assess whether there is a significant difference in the 
effect of incremental changes of portal venous blood flow 
rates on the size of radiofrequency (RF) versus microwave 
(MW) ablation lesions in an ex vivo blood-perfused bovine 
liver model.

Materials and 
Methods:

This study was exempt from approval by the Institutional 
Animal Care and Use Committee. Sixty ablations (30 MW 
and 30 RF ablations) were performed ex vivo in 15 bovine 
livers perfused with autologous blood via the portal vein 
at 60, 70, 80, 90, and 100 mL/min per 100 g of liver tis-
sue (three livers were used for each flow rate). Long-axis 
diameter (LAD), short-axis diameter (SAD), and volume 
were measured for each ablation lesion. A general linear 
mixed model was used to examine the effect of location, 
ablation device, and flow rate on LAD, SAD, and volume. 
Results were considered to indicate a significant differ-
ence at P less than .05.

Results: Location was not a significant predictor of LAD, SAD, or 
volume (P ! .4). The slope of the relationship between 
flow rate and LAD, SAD, and volume was significantly dif-
ferent according to ablation device (P , .0001). For RF 
ablation lesions, the mean LAD, SAD, and volume dem-
onstrated a significant inverse relationship with flow rate, 
while the measurements for MW ablation did not change 
with variation in flow rates.

Conclusion: The size of RF ablation lesions is highly variable, with a 
significant inverse relationship to the rate of portal venous 
blood flow. Conversely, the size of MW ablation lesions 
is unaffected by changes in portal venous blood flow. The 
consistency of the size of MW ablation lesions could trans-
late into a higher local tumor eradication rate than that 
reported with RF ablation.
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years of experience with bovine liver 
models; N.A.D., a student assistant).

Liver Procurement and Perfusion
Fresh, normal bovine livers and blood 
were obtained from a local slaughter-
house (G&C Packing, Colorado Springs, 
Colo). Livers underwent approximately 
15 minutes of warm ischemia prior 
to excision and flushing with 10 L of 
chilled Krebs-Henseleit solution, which 
contained 30 000 USP units of heparin. 
Seven liters of blood was collected from 
each slaughtered cow; the blood was 
filtered for clots and particulates and 
mixed with 30 000 USP units of hepa-
rin. Both the liver and blood were iced 
to maintain hypothermia at 4°–6°C and 
were transported to our research labo-
ratory. Total cold ischemic time aver-
aged 2 hours.

Prior to the experiments, the livers 
were perfused with autologous blood 
by using a perfusion system (Fig 1). 
The main portal vein was cannulated 
by using a 24-F Foley catheter, which 
was connected to a centrifugal pump 
(Bio-Medicus Bio-Console, model 540; 
Medtronic, Minneapolis, Minn). The 
blood passed through a 500-mL bub-
ble trap and a membrane oxygena-
tor and heat exchanger (NT Affinity; 
Medtronic) that were connected to a 
canister of 95% oxygen and 5% carbon 
dioxide (Airgas, Radnor, Pa) to achieve 

lesions demonstrates complete coagu-
lation necrosis of tissue down to and 
even enveloping blood vessels as large 
as 11 mm in diameter. While these data 
are very encouraging, there is conflict-
ing information regarding the effect of 
alterations of global or regional hepatic 
blood flow on the size of MW ablation 
lesions. Investigators of various stud-
ies report that the size of coagulation 
necrosis is unaffected, increased, and 
decreased by the presence of hepatic 
blood flow (33–38). Furthermore, these 
investigators looked only at the effect 
of the presence or absence of flow, and 
none addressed the important issue of 
the effect of incremental changes in he-
patic blood flow rate on the size of MW 
ablation lesions.

Given the importance of accurate 
performance characteristics of MW 
ablation devices on the success rate of 
liver tumor ablation, we performed a 
study to assess if there is a significant 
difference in the effect of incremental 
changes of portal venous blood flow 
rates on the size of RF versus MW ab-
lation lesions in an ex vivo blood-per-
fused bovine liver model (39).

Materials and Methods

This study was exempt from approval 
by our Institutional Animal Care and 
Use Committee. It was supported in 
part by the National Science Founda-
tion, grant no. HRD-0932339, and by 
BSD Medical (Salt Lake City, Utah), 
which provided funding and equip-
ment. The entire experiment, includ-
ing design, study execution, data col-
lection, data analysis, and manuscript 
preparation, was under the control of 
and performed by the authors. None of 
the authors are employed by or serve 
as a consultant for BSD Medical. The 
laboratory portion of the study was per-
formed by two authors (A.C.L., with 4 

Radiofrequency (RF) ablation is 
a widely accepted technique for 
treating primary and secondary 

malignant hepatic tumors (1–4); how-
ever, its success rate in eradicating tu-
mors is affected by multiple factors, in-
cluding tumor size and location, hepatic 
blood flow, equipment, and technique 
(5–7). Of these, hepatic blood flow is a 
perplexing variable that has been shown 
to have a substantial effect on the suc-
cess rate of local tumor eradication. 
Multiple studies have shown that the 
size of RF ablation lesions is inversely 
related to hepatic blood flow. An in-
crease or decrease in global or regional 
hepatic blood flow causes an inverse 
change in the overall size of RF abla-
tion lesions (8–22). While RF ablation 
systems can create ablation lesions up 
to 7 cm in diameter, the intrinsic var-
iability in hepatic blood flow between 
individuals and within the same person 
limits the average effective ablation size 
of RF ablation devices to approximately 
3.5 cm (23–27). This limited effective 
size is directly related to the high suc-
cess rate (.90%) reported for eradica-
tion of tumors smaller than 3 cm and 
the precipitous decrease in success rate 
for larger tumors (1–6).

Microwave (MW) ablation devices 
are an attractive alternative to RF abla-
tion devices, in part because of a dimin-
ished susceptibility to the “heat sink” 
effect (local cooling of thermal process) 
caused by adjacent hepatic blood ves-
sels (28–32). In studies of the heat sink 
effect on MW ablation, the coagulative 
necrosis is either unaffected or min-
imally indented in the region immedi-
ately contiguous to large blood vessels. 
Histologic analysis of MW ablation 

Implication for Patient Care

 n The consistency of the size of 
MW ablation lesions could trans-
late into a higher local tumor 
eradication rate than that 
reported with RF ablation.

Advance in Knowledge

 n The size of radiofrequency (RF) 
ablation lesions is highly variable 
(volume, 3.7–12.5 cm3), with a 
significant (P , .05) inverse rela-
tionship to the rate of portal 
venous blood flow; conversely, 
the size of microwave (MW) ab-
lation lesions is essentially unaf-
fected by changes in portal 
venous blood flow.
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60, 70, 80, 90, and 100 mL/min per 100 
g. Four ablations were performed in 
each liver: two with RF and two with 
MW. By using the manufacturers’ rec-
ommended clinical protocols, RF abla-
tions were performed for 12 minutes in 
the impedance mode at the maximum 
power setting (200 W), and MW ab-
lations were performed for 10 minutes 
at the maximum power setting (60 W). 
Immediately after each ablation, the RF 
or MW applicator was withdrawn, and 
a wooden marker probe was inserted 
into the track of the applicator.

Examination of the Ablation Specimens
On the basis of prior evidence of a close 
correlation between the histopathologic 
and gross assessment of the extent of 
coagulative necrosis in liver ablations, 
the size of ablations in this study was 
determined from measurement of the 
gross specimens (7,34,35,39,41) (Fig 2).  
After completion of all ablations in a 
liver, the liver was disconnected from 
the perfusion apparatus and dissected. 
The livers were sliced immediately adja-
cent and parallel to the marker probes 
in the applicator tracks, thus bisecting 
each ablation lesion. The maximum 
long-axis diameter (LAD) and short-ax-
is diameter (SAD) of each ablation zone 
(outer margin to outer margin of the 

to create all RF ablations. The applica-
tors were cooled to 18°–22°C by inter-
nal perfusion with chilled normal saline 
by using the roller pump.

All MW ablations were created with 
a system (MicroThermX; BSD Medical) 
consisting of a 15-gauge single-needle 
applicator with a 5.0-cm antenna and 
integral shaft cooling system (Syn-
chroWave, model SW-1415; BSD Med-
ical) and a 915-MHz power generator 
(model MTX-180; BSD Medical) that 
operates at a maximum of 60 W per an-
tenna. The antenna was perfused with 
a sterile isotonic saline solution with 
the temperature selection setting set to 
“normal” on the coolant pump.

Ablation Location and Technique
The bovine liver has lobar anatomy that 
is similar to the human liver, with large 
right and left lobes (40). RF and MW 
applicators were placed alternately in 
the anterior or posterior segment of 
the right lobe. US guidance was used to 
place the applicator tips at least 2 cm 
away from gray-scale visible portal or 
hepatic veins and at least 1 cm deep at 
the level of the hepatic capsule.

Sixty ablations (30 RF and 30 MW)  
were performed in 15 bovine livers. Of 
the 15 livers, three were perfused at 
each of the following portal flow rates: 

40%–50% oxygenation and a tempera-
ture of 37°C. The blood flow rate was 
controlled by the centrifugal pump and 
was monitored with a flowmeter (Bio-
Medicus, model TX40; Medtronic). 
Flow rates were set at 60, 70, 80, 90, 
and 100 mL/min per 100 g of tissue to 
reflect normal portal venous flow rates 
in humans. Intrahepatic blood flow in 
the hepatic segments where ablations 
were to be performed was confirmed 
by using color Doppler ultrasonography 
(US) (IU 22, V6–2; Philips Healthcare, 
Andover, Mass).

RF and MW Ablation Equipment
One RF and one MW ablation system 
were used in the study. The RF abla-
tion system was chosen on the basis 
of extensive prior experience with the 
device and its availability in our labora-
tory. The MW ablation system was cho-
sen on the basis of the manufacturer’s 
interest in supporting the study.

The RF ablation system (Cool-Tip; 
Covidien, Boulder, Colo) consisted of 
a 480-kHz 200-W alternating electric-
current generator (model CC-1–117; 
Covidien), a 17-gauge 3.0-cm monopo-
lar internally cooled applicator (model 
SWCT 1530; Covidien), a roller pump 
(model PE-PM; Covidien), and a dis-
persive electrode. This system was used 

Figure 1

Figure 1: Computer-generated image shows components of the liver perfusion apparatus.

Figure 2

Figure 2: Ablation specimen shows the measure-
ment technique for LAD (long arrow) and SAD (short 
arrow).
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the estimation of the means and vari-
ances before the power calculation. The 
power calculation is likely to be conser-
vative, because it did not account for 
the fact that the power calculation was 
only done because the initial result was 
not significant (45).

Results

Sample pathologic specimens for the 
two devices at the different flow rates 
are shown in Figure 3. A total of 15 RF 
and 17 MW ablations were performed 
in the anterior right lobe, and 13 MW 
and 15 RF ablations were performed in 
the posterior right lobe. The means and 
standard deviations for the LAD, SAD, 
and volume of the RF and MW abla-
tions are shown in the Table 1.

LAD
Ablation location was not a significant 
predictor of LAD (F = 1.03, numerator 
degrees of freedom = 4, denominator 
degrees of freedom = 52, P = .4005). 
In the reduced model, ablation device 
produced a significant difference in 
LAD (F = 303.54, numerator degrees of 
freedom = 2, denominator degrees of 

with the location nested within the liver 
as a random effect was considered but 
lacked enough replicates within each 
location to allow convergence. At an a 
level of .05, the null hypothesis of no 
difference between the lines accord-
ing to location was tested by using the 
Wald test with Kenward-Roger degrees 
of freedom (44).

Nonsignificance of the results led 
to a reduced model for the means. The 
fixed predictors were indicator variables 
for ablation device and measures of flow 
rate. A full model was fit in every cell, 
allowing different estimates of intercept 
and slope to be calculated for each ab-
lation device. The null hypothesis of no 
difference between the lines according 
to ablation device was tested. A step-
down test was used to describe the dif-
ferences in slopes according to ablation 
device. Parameter estimates and 95% 
confidence intervals (CIs) were pro-
duced. Model-based F tests were report-
ed by giving the statistic, the numerator 
degrees of freedom, the denominator 
degrees of freedom, and the P value.

A post hoc power analysis was 
performed by using the methods of 
Taylor and Muller (45) to account for 

red zone) were measured (Fig 2), and 
the volume (V) of the ablation zone was 
calculated by using the formula for an 
ellipsoid: V = 4/3p ⋅ (LAD/2)(SAD/2)
(SAD/2).

Statistical Analysis
A backward stepwise model-fitting ap-
proach was used to examine the effect 
of location, ablation device, and actual 
flow rate on three outcomes: LAD, 
SAD, and volume. Residual diagnostics 
were used to examine goodness of fit 
(42). All calculations were done by us-
ing software (SAS/STAT, version 9.3; 
SAS Institute, Cary, NC).

Three general linear mixed models 
were fit, one for each outcome (LAD, 
SAD, and volume) (43). The fixed pre-
dictors included indicator variables for 
ablation device (RF or MW), location 
(anterior or posterior right lobe), and 
measures of actual flow rate in milliliters 
per minute per 100 g. The full model 
in every cell approach allowed different 
estimates of intercept and slope to be 
calculated for each ablation method ac-
cording to lobe combination. The liver 
was fit as a random effect, with an un-
structured covariance. Fitting a model 

Figure 3

Figure 3: RF and MW ablation speci-
mens for each of the portal venous flow 
rates from 60 to 100 mL/min per 100 g 
of hepatic tissue. Note the progressive 
decrease in size of the RF ablation 
lesions and the lack of change in the size 
of the MW ablation lesions (from left to 
right) as the flow rate increases. MWA = 
MW ablation, RFA = RF ablation.
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df = 43, P , .0001; 95% CI for the dif-
ference in slope between MW ablations 
and RF ablations: 0.014, 0.030).

The predicted regression lines were 
SAD = 3.05 2 (0.002 ⋅ flow) for MW 
ablations and SAD = 3.97 2 (0.024 ⋅ 
flow) for RF ablations. The slope for 
MW ablations was not significantly 
different from 0 (b = 0.002, standard 
error = 0.003, t = 20.56, df = 26, P 
= .5836). For RF ablations, the mean 
SAD ablated did differ significantly ac-
cording to flow rate, so that for an in-
crease in flow of 1 mL/min per 100 g, 
the SAD decreased by 0.02 cm (95% 
CI: 20.030, 20.017) (Fig 5).

Volume
Ablation location was not a significant 
predictor of the volume ablated (F = 
0.53, numerator degrees of freedom = 
4, denominator degrees of freedom = 
43, P = .7160). In the reduced model, 
the ablation device used produced a sig-
nificant difference in volume (F = 601.3, 
numerator degrees of freedom = 2, de-
nominator degrees of freedom = 43, P 
, .0001). The slope of the relationship 
between flow rate and volume was sig-
nificantly different according to the ab-
lation device used (t = 6.75, df = 43, 
P , .0001; 95% CI for the difference 
in slope between MW ablations and RF 
ablations: 0.15, 0.27).

freedom = 56, P , .0001). The slope of 
the relationship between flow rate and 
LAD was significantly different accord-
ing to the ablation device used (t = 4.20, 
df = 56, P , .0001; 95% CI for the dif-
ference in slope between MW ablations 
and RF ablations: 0.013, 0.037).

The predicted regression lines were 
LAD = 4.4 + (0.007 ⋅ flow) for MW ab-
lations and LAD = 4.4 2 (0.018 ⋅ flow) 
for RF ablations. The slope for MW 
ablations was not significantly different 
from 0 (b = 0.007, standard error = 
0.004, t = 1.74, df = 56, P = .087). For 
RF ablations, the mean LAD ablated 
did differ significantly according to flow 
rate, so that for an increase in flow of 1 
mL/min per 100 g, the LAD ablated de-
creased by 0.018 cm (95% CI: 20.026, 
20.009) (Fig 4).

SAD
Ablation location was not a significant 
predictor of SAD (F = 0.77, numerator 
degrees of freedom = 4, denominator de-
grees of freedom = 42.3, P = .5509). In 
the reduced model, the ablation device 
used produced a significant difference 
in SAD (F = 143.81, numerator degrees 
of freedom = 2, denominator degrees of 
freedom = 43, P , .0001). The slope of 
the relationship between flow rate and 
LAD was significantly different accord-
ing to the ablation device used (t = 5.90, 
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Figure 4

Figure 4: Graph shows LAD measurements 
for MW and RF ablation lesions with changes in 
portal venous flow. MWA = MW ablation, RFA = RF 
ablation.

Figure 5

Figure 5: Graph shows SAD measurements 
for MW and RF ablation lesions with changes in 
portal venous flow. MWA = MW ablation, RFA = RF 
ablation.
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Figure 6

Figure 6: Graph shows volume measurements 
for MW and RF ablation lesions with changes in 
portal venous flow. MWA = MW ablation, RFA = RF 
ablation.

The predicted regression lines were 
volume = 21.5 + (0.006 ⋅ flow) for MW 
ablations and volume = 0.006 2 (0.240 
⋅ flow) for RF ablations. The slope for 
MW ablations was not significantly 
different from 0 (b = 0.006, standard 
error = 0.025, t = 0.23, df = 28.7, P 
= .8229). For RF ablations, the mean 
volume ablated did differ significantly 
according to flow rate, so that for an 
increase in flow of 1 mL/min per 100 
g, the volume ablated decreased by 0.2 
cm3 (95% CI: 20.26, 0.15) (Fig 6).

Results of the post hoc power 
analysis showed that the power for the 
hypothesis test of zero slope for the 
MW ablation was 0.057 (95% CI: 0.05, 
1.00). The power analysis accounted for 
the fact that we used sample observed 
estimates of both the means and the 
variances, which accounts for the wide 
width of the 95% CI. Even conducting 
the study with 60 livers would still pro-
duce a power of only 0.082 (95% CI: 
0.05, 1.00). Post hoc power would be 
even smaller for the outcomes of LAD 
and SAD and was not calculated.

Discussion

Predictability and reproducibility of the 
thermal lesions created by ablation de-
vices are critical to the successful treat-
ment of hepatic tumors (46). Not know-
ing how an ablation device is going to 

perform prevents appropriate treatment 
planning and can result in over- or un-
dertreatment. Overtreatment, defined 
as destruction of tissue beyond the ab-
lation of a tumor and the desired mar-
gin of normal tissue, can cause excessive 
destruction of adjacent normal hepatic 
tissue and potential injury to critical ad-
jacent structures, such as bile ducts, dia-
phragm, and bowel (47,48). Undertreat-
ment, which is the failure to eradicate all 
tumor, is a technical failure that could 
require immediate retreatment or result 
in a high local tumor failure rate. The var-
iability of the size of coagulation necrosis 
produced with RF ablation systems sug-
gests the need for an ablation system that 
can produce the same size of ablation for 
a given operational setting in all patients, 
irrespective of variations in hepatic per-
fusion or background hepatic pathologic 
condition (5–22).

Our results agree with those of pre-
vious reports of the susceptibility of RF 
ablation to variations in hepatic blood 
flow (8–22). We demonstrated a signif-
icant inverse linear correlation between 
changes in portal venous blood flow and 
the size of coagulation necrosis produced 
with RF ablation. The mean decrease in 
the SAD of RF ablation lesions from 60 
to 100 mL/min per 100 g of portal ve-
nous blood flow was 1.1 cm (decrease 
from 2.7 cm to 1.6 cm). The mean de-
crease in lesion volume with RF abla-
tion was a substantial 350% (decrease 
from 12.5 cm3 to 3.7 cm3). Because the 
flow rates in our study are within the 
spectrum of normal portal venous flow 
rates in humans, these results are likely 
clinically relevant (49). The potential 
importance of this variability is clear in 
a hypothetical clinical scenario of a pa-
tient with a 2-cm hepatic tumor: While 
a single 2.7-cm ablation might be ade-
quate to eradicate the tumor, a single 
1.6-cm ablation would likely fail to de-
stroy the entire tumor. This level of var-
iability and uncertainty in outcome in 
terms of patient care is unacceptable.

On the other hand, our MW ab-
lation results did not demonstrate a 
significant change in the average LAD, 
SAD, and volume of MW ablation le-
sions from 60 to 100 mL/min per 100 
g of portal venous blood flow. This 

indicates one of two things: either the 
mean size of MW ablations does not 
change with different flow rates, or our 
study had insufficient power to dem-
onstrate a small change in the mean 
size of the MW ablations. Nonetheless, 
even if our study failed to demonstrate 
a small change in the size of MW ab-
lations, Figures 4–6 depict the marked 
difference between the susceptibility 
of RF and MW techniques to changes 
in portal venous blood flow. By apply-
ing our MW ablation results to the 
same hypothetical clinical scenario of 
a patient with a 2-cm tumor, a single 
predictable and reproducible 2.8-cm 
ablation would likely eradicate the tu-
mor across the full physiologic range of 
portal venous blood flow.

The difference in susceptibility of 
RF and MW ablation to alterations in 
hepatic blood flow is not unexpected 
from a physics perspective. RF operates 
at a low electromagnetic frequency (500 
kHz) and has a long wavelength (9 m). 
During ablation, alternating RF current 
passes between the applicator and the 
grounding pad and heats tissue around 
the applicator by means of ionic agita-
tion and frictional heat. The amount 
of frictional heat is directly related to 
the conductivity of the tissue through 
which the current passes (low conduc-
tivity = more heat; high conductivity = 
less heat). The RF conductivity of he-
patic tissue is five times less than that 
of blood; thus, as blood flow increases, 
it provides an alternate low-resistance 
pathway for the RF current, which di-
minishes the amount of frictional heat 
around the applicator and results in a 
smaller thermal lesion. MW ablation op-
erates at a much higher frequency and 
shorter wavelength (915 MHz and 5 cm, 
as used in the present study) and heats 
tissue by tumbling the water molecules 
immediately adjacent to the applicator. 
The difference in MW conductivity of 
hepatic tissue and blood is only twofold; 
thus, variation in blood flow has less of 
an effect on the size of a thermal lesion 
than that seen with RF ablation (50,51).

Our study had several limitations. 
Most important, we evaluated only one 
RF ablation device and one MW ablation 
device, each operated with a specific 
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ablation of porcine liver in vivo: effects of 
blood flow and treatment time on lesion 
size. Ann Surg 1998;227(4):559–565. 
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53–59.

 13. Washburn WK, Dodd GD 3rd, Kohlmeier 
RE, et al. Radiofrequency tissue ablation: 
effect of hepatic blood flow occlusion on 
thermal injuries produced in cirrhotic livers. 
Ann Surg Oncol 2003;10(7):773–777. 
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Effect of vascular occlusion on radiofre-
quency ablation of the liver: results in a 
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 15. Ritz JP, Lehmann K, Isbert C, Roggan A, 
Germer CT, Buhr HJ. Effectivity of laser-
induced thermotherapy: in vivo comparison 
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hepatic inflow occlusion. Lasers Surg Med 
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 16. Chang CK, Hendy MP, Smith JM, Recht 
MH, Welling RE. Radiofrequency ablation of 
the porcine liver with complete hepatic vas-

coagulative necrosis in dissected speci-
mens may lead to underestimation of 
the true volume of the ablated tissue.

In conclusion, we have demon-
strated a significant difference in the 
susceptibility of RF and MW ablation 
devices to changes in portal venous 
blood flow within the range of normal 
physiologic flow rates. The size of RF 
ablation lesions is highly variable, with 
a significant inverse relationship to the 
rate of portal venous blood flow; con-
versely, the size of MW ablation lesions 
is unaffected by changes in portal ve-
nous blood flow. This observation could 
have a substantial effect on the clini-
cal decision of which ablation devices 
should be used to treat patients with 
hepatic tumors. The availability of a de-
vice that creates a predictable and re-
producible size of coagulation necrosis 
in all patients could extend the range of 
tumors and patients who can be treated 
effectively with ablation therapy.
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