Effect of Variation of Portal Venous Blood Flow on Radiofrequency and Microwave Ablations in a Blood-perfused Bovine Liver Model

Gerald D. Dodd III, MD
Nicholas A. Dodd, BPA
Anthony C. Lanctot, MS
Deborah A. Glueck, PhD

Purpose:
To assess whether there is a significant difference in the effect of incremental changes of portal venous blood flow rates on the size of radiofrequency (RF) versus microwave (MW) ablation lesions in an ex vivo blood-perfused bovine liver model.

Materials and Methods:
This study was exempt from approval by the Institutional Animal Care and Use Committee. Sixty ablations (30 MW and 30 RF ablations) were performed ex vivo in 15 bovine livers perfused with autologous blood via the portal vein at 60, 70, 80, 90, and 100 mL/min per 100 g of liver tissue (three livers were used for each flow rate). Long-axis diameter (LAD), short-axis diameter (SAD), and volume were measured for each ablation lesion. A general linear mixed model was used to examine the effect of location, ablation device, and flow rate on LAD, SAD, and volume. Results were considered to indicate a significant difference at $P < 0.05$.

Results:
Location was not a significant predictor of LAD, SAD, or volume ($P > 0.4$). The slope of the relationship between flow rate and LAD, SAD, and volume was significantly different according to ablation device ($P < 0.0001$). For RF ablation lesions, the mean LAD, SAD, and volume demonstrated a significant inverse relationship with flow rate, while the measurements for MW ablation did not change with variation in flow rates.

Conclusion:
The size of RF ablation lesions is highly variable, with a significant inverse relationship to the rate of portal venous blood flow. Conversely, the size of MW ablation lesions is unaffected by changes in portal venous blood flow. The consistency of the size of MW ablation lesions could translate into a higher local tumor eradication rate than that reported with RF ablation.

© RSNA, 2013
Radiofrequency (RF) ablation is a widely accepted technique for treating primary and secondary malignant hepatic tumors (1–4); however, its success rate in eradicating tumors is affected by multiple factors, including tumor size and location, hepatic blood flow, equipment, and technique (5–7). Of these, hepatic blood flow is a perplexing variable that has been shown to have a substantial effect on the success rate of local tumor eradication. Multiple studies have shown that the size of RF ablation lesions is inversely related to hepatic blood flow. An increase or decrease in global or regional hepatic blood flow causes an inverse change in the overall size of RF ablation lesions (8–22). While RF ablation systems can create ablation lesions up to 7 cm in diameter, the intrinsic variability in hepatic blood flow between individuals and within the same person limits the average effective ablation size of RF ablation devices to approximately 3.5 cm (23–27). This limited effective size is directly related to the high success rate (>90%) reported for eradication of tumors smaller than 3 cm and the precipitous decrease in success rate for larger tumors (1–6).

Microwave (MW) ablation devices are an alternative to RF ablation devices, in part because of a diminished susceptibility to the “heat sink” effect (local cooling of thermal process) caused by adjacent hepatic blood vessels (28–32). In studies of the heat sink effect on MW ablation, the coagulative necrosis is either unaffected or minimally indented in the region immediately contiguous to large blood vessels. Histologic analysis of MW ablation lesions demonstrates complete coagulation necrosis of tissue down to and even enveloping blood vessels as large as 11 mm in diameter. While these data are very encouraging, there is conflicting information regarding the effect of alterations of global or regional hepatic blood flow on the size of MW ablation lesions. Investigators of various studies report that the size of coagulation necrosis is unaffected, increased, and decreased by the presence of hepatic blood flow (33–38). Furthermore, these investigators looked only at the effect of the presence or absence of flow, and none addressed the important issue of the effect of incremental changes in hepatic blood flow rate on the size of MW ablation lesions.

Given the importance of accurate performance characteristics of MW ablation devices on the success rate of liver tumor ablation, we performed a study to assess if there is a significant difference in the effect of incremental changes of portal venous blood flow rates on the size of RF versus MW ablation lesions in an ex vivo blood-perfused bovine liver model (39).

Materials and Methods

This study was exempt from approval by our Institutional Animal Care and Use Committee. It was supported in part by the National Science Foundation, grant no. HRD-0932339, and by BSD Medical (Salt Lake City, Utah), which provided funding and equipment. The entire experiment, including design, study execution, data collection, data analysis, and manuscript preparation, was under the control of and performed by the authors. None of the authors are employed by or serve as a consultant for BSD Medical. The laboratory portion of the study was performed by two authors (A.C.L., with 4 years of experience with bovine liver models; N.A.D., a student assistant).

Liver Procurement and Perfusion

Fresh, normal bovine livers and blood were obtained from a local slaughterhouse (G&C Packing, Colorado Springs, Colo). Livers underwent approximately 15 minutes of warm ischemia prior to excision and flushing with 10 L of chilled Krebs-Henseleit solution, which contained 30000 USP units of heparin. Seven liters of blood was collected from each slaughtered cow; the blood was filtered for clots and particulates and mixed with 30000 USP units of heparin. Both the liver and blood were iced to maintain hypothermia at 4°–6°C and were transported to our research laboratory. Total cold ischemic time averaged 2 hours.

Prior to the experiments, the livers were perfused with autologous blood by using a perfusion system (Fig 1). The main portal vein was cannulated by using a 24-F Foley catheter, which was connected to a centrifugal pump (Bio-Medicus Bio-Console, model 540; Medtronic, Minneapolis, Minn). The blood passed through a 500-mL bubble trap and a membrane oxygenator and heat exchanger (NT Affinity; Medtronic) that were connected to a canister of 95% oxygen and 5% carbon dioxide (Airgas, Radnor, Pa) to achieve
EXPERIMENTAL STUDIES: Effect of Blood Flow Variation on Ablation

Dodd et al

Effect of Blood Flow Variation on Ablation

40%–50% oxygenation and a temperature of 37°C. The blood flow rate was controlled by the centrifugal pump and was monitored with a flowmeter (Biomedicus, model TX40; Medtronic). Flow rates were set at 60, 70, 80, 90, and 100 mL/min per 100 g of tissue to reflect normal portal venous flow rates in humans. Intrahepatic blood flow in the hepatic segments where ablations were to be performed was confirmed by using color Doppler ultrasonography (US) (IU 22, V6–2; Philips Healthcare, Andover, Mass).

RF and MW Ablation Equipment

One RF and one MW ablation system were used in the study. The RF ablation system was chosen on the basis of extensive prior experience with the device and its availability in our laboratory. The MW ablation system was chosen on the basis of the manufacturer’s interest in supporting the study.

The RF ablation system (Cool-Tip; Covidien, Boulder, Colo) consisted of a 480-kHz 200-W alternating electric-current generator (model CC-1–117; Covidien), a 17-gauge 3.0-cm monopolar internally cooled applicator (model SWCT 1530; Covidien), a roller pump (model PE-PM; Covidien), and a dispersive electrode. This system was used to create all RF ablations. The applicators were cooled to 18°–22°C by internal perfusion with chilled normal saline by using the roller pump.

All MW ablations were created with a system (MicroThermX; BSD Medical) consisting of a 15-gauge single-needle applicator with a 5.0-cm antenna and integral shaft cooling system (SynchroWave, model SW-1415; BSD Medical) and a 915-MHz power generator (model MTX-180; BSD Medical) that operates at a maximum of 60 W per antenna. The antenna was perfused with a sterile isotonic saline solution with the temperature selection setting set to “normal” on the coolant pump.

Ablation Location and Technique

The bovine liver has lobar anatomy that is similar to the human liver, with large right and left lobes (40). RF and MW applicators were placed alternately in the anterior or posterior segment of the right lobe. US guidance was used to place the applicator tips at least 2 cm away from gray-scale visible portal or hepatic veins and at least 1 cm deep at the level of the hepatic capsule.

Sixty ablations (30 RF and 30 MW) were performed in 15 bovine livers. Of the 15 livers, three were perfused at each of the following portal flow rates: 40%–50% oxygenation and a temperature of 37°C. Four ablations were performed in each liver: two with RF and two with MW. By using the manufacturers’ recommended clinical protocols, RF ablations were performed for 12 minutes in the impedance mode at the maximum power setting (200 W), and MW ablations were performed for 10 minutes at the maximum power setting (60 W). Immediately after each ablation, the RF or MW applicator was withdrawn, and a wooden marker probe was inserted into the track of the applicator.

Examination of the Ablation Specimens

On the basis of prior evidence of a close correlation between the histopathologic and gross assessment of the extent of coagulative necrosis in liver ablations, the size of ablations in this study was determined from measurement of the gross specimens (7,34,35,39,41) (Fig 2). After completion of all ablations in a liver, the liver was disconnected from the perfusion apparatus and dissected. The livers were sliced immediately adjacent and parallel to the marker probes in the applicator tracks, thus bisecting each ablation lesion. The maximum long-axis diameter (LAD) and short-axis diameter (SAD) of each ablation zone (outer margin to outer margin of the

Figure 1: Computer-generated image shows components of the liver perfusion apparatus.

Figure 2: Ablation specimen shows the measurement technique for LAD (long arrow) and SAD (short arrow).
The estimation of the means and variances before the power calculation. The power calculation is likely to be conservative, because it did not account for the fact that the power calculation was only done because the initial result was not significant (45).

Results
Sample pathologic specimens for the two devices at the different flow rates are shown in Figure 3. A total of 15 RF and 17 MW ablations were performed in the anterior right lobe, and 13 MW and 15 RF ablations were performed in the posterior right lobe. The means and standard deviations for the LAD, SAD, and volume of the RF and MW ablations are shown in the Table 1.

LAD
Ablation location was not a significant predictor of LAD ($F = 1.03$, numerator degrees of freedom = 4, denominator degrees of freedom = 52, $P = .4005$). In the reduced model, ablation device produced a significant difference in LAD ($F = 303.54$, numerator degrees of freedom = 2, denominator degrees of...
Mean Measurements of Ablation Lesions at Various Portal Venous Flow Rates

<table>
<thead>
<tr>
<th>Flow (mL/min per 100 g)</th>
<th>Measure</th>
<th>RF</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>LAD (cm)</td>
<td>3.23 ± 0.19</td>
<td>4.97 ± 0.49</td>
</tr>
<tr>
<td>70</td>
<td>SAD (cm)</td>
<td>2.72 ± 0.21</td>
<td>3.72 ± 0.24</td>
</tr>
<tr>
<td>80</td>
<td>Volume (cm³)</td>
<td>2.83 ± 0.18</td>
<td>3.72 ± 0.24</td>
</tr>
</tbody>
</table>

Note: Data are means ± standard deviations. Portal venous flow rates are 60 to 80 mL/min per 100 g of hepatic tissue. There were 10 ablations created for each device for every flow rate shown here.

freedom = 56, P < .0001). The slope of the relationship between flow rate and LAD was significantly different according to the ablation device used (t = 4.20, df = 56, P < .0001; 95% CI for the difference in slope between MW ablations and RF ablations: 0.013, 0.037).

The predicted regression lines were LAD = 4.4 + (0.007 · flow) for MW ablations and LAD = 4.4 − (0.018 · flow) for RF ablations. The slope for MW ablations was not significantly different from 0 (β = 0.007, standard error = 0.004, t = 1.74, df = 56, P = .087). For RF ablations, the mean LAD ablated did differ significantly according to flow rate, so that for an increase in flow of 1 mL/min per 100 g, the LAD ablated decreased by 0.018 cm (95% CI: −0.026, −0.009) (Fig 4).

Volume

Ablation location was not a significant predictor of the volume ablated (F = 0.53, numerator degrees of freedom = 4, denominator degrees of freedom = 43, P = .7160). In the reduced model, the ablation device used produced a significant difference in volume (F = 601.3, numerator degrees of freedom = 2, denominator degrees of freedom = 43, P < .0001). The slope of the relationship between flow rate and volume was significantly different according to the ablation device used (t = 6.75, df = 43, P < .0001; 95% CI for the difference in slope between MW ablations and RF ablations: 0.15, 0.27).
Predictability and reproducibility of the thermal lesions created by ablation devices are critical to the successful treatment of hepatic tumors (46). Not knowing how an ablation device is going to perform prevents appropriate treatment planning and can result in over- or undertreatment. Overtreatment, defined as destruction of tissue beyond the ablation of a tumor and the desired margin of normal tissue, can cause excessive destruction of adjacent normal hepatic tissue and potential injury to critical adjacent structures, such as bile ducts, diaphragm, and bowel (47,48). Undertreatment, which is the failure to eradicate all tumor, is a technical failure that could require immediate retreatment or result in a high local tumor failure rate. The variability of the size of coagulation necrosis produced with RF ablation systems suggests the need for an ablation system that can produce the same size of ablation for a given operational setting in all patients, irrespective of variations in hepatic perfusion or background hepatic pathologic condition (5–22).

Our results agree with those of previous reports of the susceptibility of RF ablation to variations in hepatic blood flow (8–22). We demonstrated a significant inverse linear correlation between changes in portal venous blood flow and the size of coagulation necrosis produced with RF ablation. The mean decrease in the SAD of RF ablation lesions from 60 to 100 mL/min per 100 g of portal venous blood flow was 1.1 cm (decrease from 2.7 cm to 1.6 cm). The mean decrease in lesion volume with RF ablation was a substantial 330% (decrease from 12.5 cm³ to 3.7 cm³). Because the flow rates in our study are within the spectrum of normal portal venous flow rates in humans, these results are likely clinically relevant (49). The potential importance of this variability is clear in a hypothetical clinical scenario of a patient with a 2-cm hepatic tumor: While a single 2.7-cm ablation might be adequate to eradicate the tumor, a single 1.6-cm ablation would likely fail to destroy the entire tumor. This level of variability and uncertainty in outcome in terms of patient care is unacceptable.

On the other hand, our MW ablation results did not demonstrate a significant change in the average LAD, SAD, and volume of MW ablation lesions from 60 to 100 mL/min per 100 g of portal venous blood flow. This indicates one of two things: either the mean size of MW ablations does not change with different flow rates, or our study had insufficient power to demonstrate a small change in the mean size of the MW ablations. Nonetheless, even if our study failed to demonstrate a small change in the size of MW ablations, Figures 4–6 depict the marked difference between the susceptibility of RF and MW techniques to changes in portal venous blood flow. By applying our MW ablation results to the same hypothetical clinical scenario of a patient with a 2-cm tumor, a single predictable and reproducible 2.8-cm ablation would likely eradicate the tumor across the full physiologic range of portal venous blood flow.

The difference in susceptibility of RF and MW ablation to alterations in hepatic blood flow is not unexpected from a physics perspective. RF operates at a low electromagnetic frequency (500 kHz) and has a long wavelength (9 m). During ablation, alternating RF current passes between the applicator and the grounding pad and heats tissue around the applicator by means of ionic agitation and frictional heat. The amount of frictional heat is directly related to the conductivity of the tissue through which the current passes (low conductivity = more heat; high conductivity = less heat). The RF conductivity of hepatic tissue is five times less than that of blood; thus, as blood flow increases, it provides an alternate low-resistance pathway for the RF current, which diminishes the amount of frictional heat around the applicator and results in a smaller thermal lesion. MW ablation operates at a much higher frequency and shorter wavelength (915 MHz and 5 cm, as used in the present study) and heats tissue by tumbling the water molecules immediately adjacent to the applicator. The difference in MW conductivity of hepatic tissue and blood is only twofold; thus, variation in blood flow has less of an effect on the size of a thermal lesion than that seen with RF ablation (50,51).

Our study had several limitations. Most important, we evaluated only one RF ablation device and one MW ablation device, each operated with a specific...
ablation protocol; therefore, it is unknown if the difference in susceptibility to variations in portal blood flow will be found with other devices or even with the same devices operated with different generator settings or lengths of ablation time. We designed our study to avoid large hepatic blood vessels and assess the effect of variation of global hepatic perfusion on the overall size of RF and MW ablations; thus, we cannot comment on the effect of variation in hepatic blood flow on the local heat sink effect of adjacent large blood vessels in terms of ablation size or configuration.

The perfused bovine liver model has several intrinsic limitations. We did not perfuse the hepatic artery, as it is technically challenging in the bovine liver, owing to a small artery. While this would clearly have had an additional negative effect on the size of RF ablations, we suspect that there would not have been any effect of the size of MW ablations; however, this remains to be proved with future study (14,15). In addition, the bovine liver model represents normal noncirrhotic liver tissue and lacks the presence of tumor; thus, it may be difficult to extrapolate our findings to patients with cirrhosis and those with tumors, either with or without cirrhosis. However, we believe that our results are clinically relevant, given the need to ablate both a tumor and the safety margin of surrounding nonmalignant hepatic parenchyma. As shown in the article by Montgomery et al, the performance of RF ablation devices in tumors smaller than 2.25 cm in diameter is unrelated to tumor type or size or the presence or absence of cirrhosis and is most likely controlled by hepatic perfusion (23). Thus, we believe that knowledge about the performance of RF and MW ablation devices in the bovine liver model is likely translatable to patients who have primary or secondary hepatic tumors, either with or without cirrhosis. Last, our study shares a recently identified limitation of the measurement of ablation lesions in gross pathologic specimens. Brace et al (52) reported that there is variable shrinkage of liver tissue with RF and MW ablation and that the gross measurement of the coagulative necrosis in dissected specimens may lead to underestimation of the true volume of the ablated tissue.

In conclusion, we have demonstrated a significant difference in the susceptibility of RF and MW ablation devices to changes in portal venous blood flow within the range of normal physiologic flow rates. The size of RF ablation lesions is highly variable, with a significant inverse relationship to the rate of portal venous blood flow; conversely, the size of MW ablation lesions is unaffected by changes in portal venous blood flow. This observation could have a substantial effect on the clinical decision of which ablation devices should be used to treat patients with hepatic tumors. The availability of a device that creates a predictable and reproducible size of coagulation necrosis in all patients could extend the range of tumors and patients who can be treated effectively with ablation therapy.

Disclosures of Conflicts of Interest: G.D.D. Financial activities related to the present article: ablation equipment and study funding from BSD Medical. Financial activities not related to the present article: author is consultant for Philips Research. Other relationships: none to disclose. N.A.D. Financial activities related to the present article: ablation equipment and study funding from BSD Medical. Financial activities not related to the present article: none to disclose. Other relationships: none to disclose. A.C.L. Financial activities related to the present article: a) ablation equipment and study funding from BSD Medical. Financial activities not related to the present article: none to disclose. Other relationships: none to disclose. D.A.G. No relevant conflicts of interest to disclose.

References
16. Chang CK, Hendy MP, Smith JM, Recht MH, Welling RE. Radiofrequency ablation of the porcine liver with complete hepatic vas-